Study on the Relevance Factor of Maximum a Posteriori with GMM for Language Recognition

نویسندگان

  • Chang Huai You
  • Haizhou Li
  • Kong-Aik Lee
چکیده

In this paper, the relevance factor in maximum a posteriori (MAP) adaptation of Gaussian mixture model (GMM) from universal background model (UBM) is studied for language recognition. In conventional MAP, relevance factor is typically set as a constant empirically. Knowing that relevance factor determines how much the observed training data influence the model adaptation, thus the resulting GMM models, we believe that the relevance factor should be dependent to the data for more effective modeling. We formulate the estimation of relevance factor in a systematic manner and study its role in characterizing spoken languages with supervectors. We use a Bhattacharyya-based language recognition system on National Institute of Standards and Technology (NIST) language recognition evaluation (LRE) 2009 task to investigate the validate of the data-dependent relevance factor. Experimental results show that we achieve improved performance by using the proposed relevance factor.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Relevance Factor of Maximum a posteriori Adaptation for GMM-SVM in Speaker and Language Recognition

Gaussian mixture model support vector machine (GMMSVM) with nuisance attribute projection (NAP) has been found to be effective and reliable for speaker and language recognition. In maximum a posteriori (MAP) adaptation of GMM, the relevance factor is the parameter that regulates how much the adaptation data affect the base model, which impacts the final recognition performance. In our previous ...

متن کامل

Bhattacharyya-based GMM-SVM system with adaptive relevance factor for pair language recognition

In this paper, we develop a hybrid system for pair language recognition using Gaussian mixture model (GMM) supervector connecting to support vector machine (SVM). The adaptation of relevance factor in maximum a posteriori (MAP) adaptation of GMM from universal background model (UBM) is studied. In conventional MAP, relevance factor is empirically given by a constant value. It has been proven th...

متن کامل

مقایسه روش های طیفی برای شناسایی زبان گفتاری

Identifying spoken language automatically is to identify a language from the speech signal. Language identification systems can be divided into two categories, spectral-based methods and phonetic-based methods. In the former, short-time characteristics of speech spectrum are extracted as a multi-dimensional vector. The statistical model of these features is then obtained for each language. The ...

متن کامل

A hybrid modeling strategy for GMM-SVM speaker recognition with adaptive relevance factor

In Gaussian mixture model (GMM) approach to speaker recognition, it has been found that the maximum a posteriori (MAP) estimation is greatly affected by undesired variability due to varying duration of utterance as well as other hidden factors related to recording devices, session environment, and phonetic contents. We propose an adaptive relevance factor (RF) to compensate for this variability...

متن کامل

Towards a more efficient SVM supervector speaker verification system using Gaussian reduction and a tree-structured hash

Speaker verification (SV) systems that employ maximum a posteriori (MAP) adaptation of a Gaussian mixture model (GMM) universal background model (UBM) incur a significant teststage computational load in the calculation of a posteriori probabilities and sufficient statistics. We propose a multi-layered hash system employing a tree-structured GMM which uses Runnalls’ GMM reduction technique. The ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011